您当前所在的位置是: 主页 > 财经资讯 >
微软计算机视觉创研论坛首日干货:3项前沿检测技术解
发布日期:2020-05-20 02:12   来源:未知   阅读:

智东西

编 | 董温淑

智东西5月15日消息,昨日上午9点,微软亚洲研究院创研论坛CVPR 2020论文分享会线上开幕。会议有19位计算机视觉(CV)领域学者分享最新研究成果,讲解内容涉及检测、多模态、底层视觉、图像生成、机器学习5大方向。

14日上午,3位计算机视觉检测方向的研究员做了分享,分别介绍了先进的人脸识别技术、动作检测技术和目标检测技术。智东西对这3项先进技术进行解读。

微软亚洲研究院创研论坛CVPR 2020论文分享会是计算机视觉(CV)领域最重要的会议之一,本届会议共分享近20项CV领域前沿技术。 一、X射线检测算法识别假图像,准确率可达95.4%

Deepfake技术的滥用轻则造成虚假信息问题,重则会引起金融安全风险、侵权问题等。一些Deepfake图像可以做到以假乱真,人类肉眼难以判断出来。这种情况下,人脸识别技术可以帮我们辨别。

现有的人脸识别工具大多针对某种特定Deepfake技术训练,用假人脸图像作为输入。就是说,人脸识别技术只能识别出特定方法合成的假图像。一旦Deepfake技术进化或换用其他Deepfake技术,人脸识别模型就可能失效。

微软亚洲研究院研究员鲍建敏讲解了人脸X射线识别技术(Face X-ray),这种技术用真实人脸图像进行训练。即使Deepfake技术进化,X射线人脸检测算法也能保持较高的准确性。

制作一张假图像的方法是把两张图像叠加,即把一张修改过的人脸图像(前景)合成到背景图像(后景)中。研究人员注意到,由于每张图像拍摄或制作过程中用到不同的硬件(传感器、透镜等)或软件(压缩、合成算法等),前景图像和后景图像的特征不可能完全相同,因此人脸图像和背景图像之间存在一个“边界”。

Face X-ray技术利用了上述特征,用人脸灰度图像作为输入。Face X-ray模型可以识别出不同灰度图像之间的差异,这样不仅可以显示出人脸图像是真实的还是伪造的,还能确定虚假图像混合边界的位置。

▲左起第一张为真实图像,其他均为假图像,Face X-ray模型检测出了假图像混合边界位置。

研究人员对比了Face X-ray模型与之前人脸识别工具的性能。结果显示,模型检测出来的假脸帧数比之前的二分类方法更多,识别准确率最高可达95.4%。

鲍建敏指出,算法还有一定局限性。比如,Face X-ray主要用人脸图像数据库FF++进行训练。FF++中大部分图像都是正脸图像,所以模型识别侧脸的准确性较低。 二、DAGM模型:区分动作与上下文,准确识别出动作

Power by DedeCms